习作分享 好教案logo
首页 高二 高二上册数学3.2立体几何中的向量方法第4课时

本文由 user1 收集发布,转载请注明出处,如有问题请联系我们!高二上册数学3.2立体几何中的向量方法第4课时

  • 资源类别:高二教案
  • 所属教版:高二上册数学人教版
  • 文件格式:ppt/doc
  • 大小:91k
  • 浏览次数:1335
  • 整理时间:2020-11-26
  • 3.2.4  坐标法中解方程组求向量的有关问题
    【学情分析】:
    教学对象是高二的学生,学生已经具备空间向量与立方体几何的相关知识,前面已经学习了直线的方向向量和平面的法向量,并且对坐标法也有一定的认识,本节课是进一步通过坐标法来解决立体几何的一些问题。我们可以将这些问题,转化为空间向量的代数运算和方程组来解决。
    【教学目标】:
    (1)知识与技能:能根据图形的特点建立合适的空间坐标系并用坐标表示点和向量;对某个向量能用解方程组的方法求其坐标.
    (2)过程与方法:在解决问题中,通过数形结合与问题转化的思想方法,加深对相关内容的理解。
    (3)情感态度与价值观:体会把立方体几何几何转化为向量问题优势,培养探索精神。
    【教学重点】:解方程组求向量的的坐标.
    【教学难点】:解方程组求向量的的坐标..
    【课前准备】:Powerpoint课件
    【教学过程设计】:
    教学环节
    教学活动
    设计意图
    一、复习引入
    1.单位向量,平面的法向量
    (1)单位向量--模为1的向量。
    (2)平面的法向量--垂直于平面的向量。
    2.坐标法。
    为探索新知识做准备.
    二、探究与练习
    一、用空间向量解决立体几何问题的“三步曲”
    学生回顾用平面向量解决平面几何问题的“三步曲”,与老师共同得出用空间向量解决立体几何问题的“三步曲”:
    (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)
    (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)
    (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形问题)
    二、例题
    例1:如图,在正方体ABCD-A1B1C1D1中,棱长为1,求证:平面A1BC1的法向量为直线DB1的方向向量.
    分析:(1)建立空间坐标系;
    (2)用坐标表示向量
    (3)设平面A1BC1的方向向量为n=(x,y,z),由下列关系
    列方程组求x,y,z.

    (4)证明向量n//
    (解略)
    思考:有更简单的方法吗?
    向量 与、的数量积为零即可。
    例2,ABCD是一个直角梯形,角ABC是直角,SA垂直于平面ABCD,SA=AB=BC=1,AD=0.5,求平面SCD与平面SBA所成二面角的余弦。

    分析:求二面角的余弦,可以转换为求它们的方向向量夹角的余弦。所以本题关键是求平面的法向量。
    解:以 A为原点建立空间直角坐标系,使点A、C、D、S的坐标分别为A(0,0,0)、C(-1,1,0)、D(0,0.5、0)、S(0,0,1)。
    设平面
    分析:建立坐标系,将向量坐标化,然后进行坐标形式下的向量运算。为简化运算,可以选择以三角形的一个顶点为原点、一条边所在直线为一条轴、三角形所在平面为坐标平面的坐标系。
    探究:不建立坐标系,如何解决这个问题?
    ――求每个力向上的分力。
    让学生通过回顾寻找将立体几何问题转化为向量问题的步骤。
    例1在建立坐标系后,比较简单,容易把握。分析中的方法是为配合本次课的课题而设计的。
    由学生回答本例的简便解法。
    例2是一个典型的通过解方程组求法向量的问题,这类问题可以不用作出二面角的平面角就求出结果。
    取y=2,因为只要向量的方向。
    例3是数学与物理的综合应用问题,求合力转化为向量的加法。
    帮助学生理解如何建立坐标系。
    单位向量的模为1。
    开拓学生思维。
    三、拓展与提高
    1,在正方体ABCD-A1B1C1D1中,P在A1B1上,Q在BC上,且A1P=QB,M、N分别为AB1、PQ的中点。求证:MN//平面ABCD。
    证明:建立如图所示的空间直角坐标系o-xyz
    设正方形边长为2,又设A1P=BQ=2x
    则P(2,2x,2)、Q(2-2x,2,0),故N(2-x, 1+x, 1),而M(2, 1, 1)
    所以向量 =(-x, x, 0),又平面AC的法向量为=(0, 0, 1),
    =0 ∴
    又M不在平面AC 内,所以MN∥平面AC。
    2,课本P122第11题。
    答案:3/8.
    学生进行提高训练应用.
    四、小结
    1.根据图形特点建立合适的空间直角坐标系,用坐标表示点和向量,通过向量解决问题。
    2.个别点和向量的坐标先假设,再列方程组来求出。
    反思归纳
    五、作业
    课本P121 ,第 6 题 和P122第10题。
    练习与测试:
    (基础题)
    1,已知S是△ABC所在平面外一点,D是SC的中点,若=,则x+y+z=       .
    答:0
    2,把边长为的正三角形沿高线折成的二面角,点到的距离是(  )
    A. B. C. D.
    答:D
    3,若a=(2x,1,3),b=(1,-2y,9),如果a与b为共线向量,则
    A.x=1,y=1     B.x=,y=- C.x=,y=-       D.x=-,y=
    解析:因为a=(2x,1,3)与b=(1,-2y,9)共线,故有==,∴x=,y=-,应选C.
    答案:C
    4,若空间三点A(1,5,-2)、B(2,4,1)、C(p,3,q+2)共线,则p=__________,q=__________.
    解析:∵A、B、C三点共线,则=λ,即(1,-1,3)=λ(p-1,-2,q+4),
    ∴∴λ=,代入得p=3,q=2.
    答案:3  2
    (中等题)
    5,棱长为a的正方体OABC—O1A1B1C1中,E、F分别为棱AB、BC上的动点,且AE=BF=x(0≤x≤a). 如图,以O为原点,直线OA、OC、OO1分别为x、y、z轴建立空间直角坐标系,
    ⑴ 求证:A1F⊥C1E;
    ⑵ 当△BEF的面积取得最大值时,求二面角B1—EF—B的正切值.
    证明:(1)A1(a,0.a),F(a-x,a,0),C1(0,a,a),E(a,x,0)
    所以 ,由此得=0,
    A1F⊥C1E
    (2)当△BEF的面积取得最大值时,E、F应分别为相应边的中点,可求得二面角B1—EF—B的正切值.
    6,如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.
    试确定点F的位置,使得D1E⊥平面AB1F;
    解:以A为坐标原点,建立下图所示的空间直角坐标系.
    设DF=x,则A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1), E(1,,0),F(x,1,0).                                                       
    ∴=(1,-,-1),=(1,0,1),=(x,1,0).                   
    ∴·=1-1=0,即D1E⊥AB1.                                 
    于是D1E⊥平面AB1FD1E⊥AF·=0x-=0,即x=.
    故当点F是CD的中点时,D1E⊥平面AB1F. 
    标签
    user1

    user1

    0

    0

    0

    img

    3.2立体几何中的向量方法第4课时

    下载积分 钻石会员
    1 免费
    请您 登录后 下载 !
    说明

    您下载所消耗的积分将转交上传作者。上传资源,免费获取积分!